
Interoperability strategy for the 
Epiverse
Hugo Gruson

(October 2023)



What do we mean by interoperability?

Implicit assumption that interoperability == integration.

This is a restrictive and risky view of interoperability.



Dependencies are one type of interoperability

S



Trade-off between integration & interoperability



Dependencies are one costly type of interoperability

• Time dependence & complex ordering in the release process

• Reverse dependency checking

• Extra development work in the case of (inevitable) breaking 

changes

(especially for emerging ecosystems)



Reverse dependency checking for CRAN release

“Each of these steps can require considerable work and judgment. 
So, if you have no reverse dependencies, you should rejoice that you can skip this 
step.”

● Loop through your recursive dependencies

● Run R CMD check in each one them

● Submit a PR to fix these errors

R Packages (2e), Wickham & Bryan 



Semantic shift

“Package A can be used with package B”

“Package A must be used with package B”



Impact on adoption

“Delivering the packages as a bundle drives adoption.”

We now have to “sell” 2 packages to users.

We are dealing with busy users who can only afford stepwise changes 
in their workflows.

“Delivering the packages as a bundle drives adoption.”



3 principles for 
interoperability strategy 

in the Epiverse



Interoperability in the Epiverse

• Consistency

• Composability

• Modularity



Interoperability in the Epiverse: Consistency
Shared standards & processes:

• Consistent design philosophy

• Consistent documentation format & organization

The more packages from the Epiverse you use or know, the easier it is to learn a 
new one.



Interoperability in the Epiverse: Composability
Composability & compatibility guarantee through integration testing

Practical examples:
• Ensure that readepi works well with linelist by ensuring that tags are not 

dropped while cleaning
• How linelist ensures interoperability with dplyr

Composability can be provided without an explicit strong dependency link



Interoperability in the Epiverse: Modularity
• Packages as small re-usable units

• Plugin system

• Method dispatch for different inputs

• Reduces lock-in and facilitates progressive replacement of various 

parts



Non-code elements of interoperability
• Connect to community to limit duplication and improve diffusion
• Ways of working



Conclusion
Interoperability is supported by:
• Consistency
• Composability
• Modularity

And is a necessary condition for:
• Adoption
• Sustainability
• Scalability


